Chapter 1 Statistical Models, Goals, And Performance Criteria
1.2 Bayesian Models
Bayesian Framework
- Statistical Model
- A random variable $X$
- $\mathcal{X}$: Sample Space = {outcomes x}
- $\mathcal{F}_X$: sigma-field of measurable events
- $P(\cdot)$: probability distribution defined on $(\mathcal{X}, \mathcal{F}_X)$
- Statistical Model
- $\mathcal{P} = {P_\theta, \theta\in\Theta}$
- Parameter $\theta$ identifies/specifies distribution in $\mathcal{P}$
- A random variable $X$
- Bayesian Principle
- Assume that the true value of the parameter $\theta$ is the realization of a random variable:
- $\theta\sim\pi(\cdot)$, where $\pi(\cdot)$ is a distribution on $(\Theta, \sigma_\Theta)$
- The distribution $(\Theta, \sigma_\Theta, \pi)$ is the Prior Distribution for $\theta$.
- The specification of $\pi(\cdot)$ may be
- purely subjective (personalistic)
- based on actual data (empirical Bayes)
- Assume that the true value of the parameter $\theta$ is the realization of a random variable:
- Bayesian Framework
-
Prior distribution for $\theta$ with density/pmf function
\[\pi(\theta), \quad\theta\in\Theta\] -
Conditional distributions for $X$ given $\theta, P_\theta$, with density/pmf function.
\[p(x\lvert\theta), \quad x\in\mathcal{X}\] -
Joint distribution for $(\theta ,X)$ with joint density/pmf function
\[f(\theta, x) = \pi(\theta)p(x\lvert\theta)\] -
Posterior distribution for $\theta$ given $X=x$ with density/pmf function
\[\pi(\theta\lvert x) = \frac{\pi(\theta)p(x\lvert\theta)}{\sum_t\pi(t)p(x\lvert t)}\]
Discrete PriorContinuous Prior
\[\pi(\theta\lvert x) = \frac{\pi(\theta)p(x\lvert\theta)}{\int_\Theta\pi(t)p(x\lvert t)}\] -
Conjugate Prior Distribution Prior and Posterior in same family.
- Example: Bernoulli Trial
Given a bernoulli trial,
- $X_1, \ldots, X_n$ are i.i.d. Bernoulli($\theta$) r.v.s.
- Outcome space: $\mathcal{X} = {Success(1), Failure()0}$
- Parameter Space: $\Theta = {\Theta: 0\leq\theta\leq 1}$
- Prior Distribution for $\theta$: density $\pi(\theta)$
-
Posterior Distribution for $\theta$:
\[\pi(\theta\lvert x_1,\ldots,x_n) = \frac{\pi(\theta)\theta^k(1-\theta)^{n-k}}{\int^1_0\pi(t)t^k(1-t)^{n-k}dt}\]such that
\[\begin{aligned} &0<\theta<1 \\ &x_1 = 0 \,or\,1, \quad i=1,\ldots,n \\ &k=\sum_{i=1}^n x_i \end{aligned}\] - Conjugate Prior Distribution
-
A priori, assume $\theta\sim B(r,s)$ distribution, with density
\[\pi(\theta) = \frac{\theta^{r-1}(1-\theta)^{s-1}}{\beta(r,s)},\quad 0<\theta<1\]where
\[\begin{aligned} \beta(r,s) &= \int_0^1\theta^{r-1}(1-\theta)^{s-1}d\theta \\ &= \frac{\Gamma(r)\Gamma(s)}{\Gamma{r+s}} \end{aligned}\]And we have,
\[\begin{aligned} &E[\theta] = \frac{r}{r+s} \\ &Var(\theta) = \frac{rs}{[(r+s)^2(r+s+1)]} \end{aligned}\] -
A posteriori
\[\pi(\theta\lvert T(X) =k)\sim B(r+k, s+(n-k))\]
-
- Example: Bernoulli Trial
Given a bernoulli trial,
-
PREVIOUSRegularization
NEXTSection 1.3