Section 1.2

 

Chapter 1 Statistical Models, Goals, And Performance Criteria

1.2 Bayesian Models

Bayesian Framework
  • Statistical Model
    • A random variable $X$
      • $\mathcal{X}$: Sample Space = {outcomes x}
      • $\mathcal{F}_X$: sigma-field of measurable events
      • $P(\cdot)$: probability distribution defined on $(\mathcal{X}, \mathcal{F}_X)$
    • Statistical Model
      • $\mathcal{P} = {P_\theta, \theta\in\Theta}$
      • Parameter $\theta$ identifies/specifies distribution in $\mathcal{P}$
  • Bayesian Principle
    • Assume that the true value of the parameter $\theta$ is the realization of a random variable:
      • $\theta\sim\pi(\cdot)$, where $\pi(\cdot)$ is a distribution on $(\Theta, \sigma_\Theta)$
    • The distribution $(\Theta, \sigma_\Theta, \pi)$ is the Prior Distribution for $\theta$.
    • The specification of $\pi(\cdot)$ may be
      • purely subjective (personalistic)
      • based on actual data (empirical Bayes)
  • Bayesian Framework
    • Prior distribution for $\theta$ with density/pmf function

      \[\pi(\theta), \quad\theta\in\Theta\]
    • Conditional distributions for $X$ given $\theta, P_\theta$, with density/pmf function.

      \[p(x\lvert\theta), \quad x\in\mathcal{X}\]
    • Joint distribution for $(\theta ,X)$ with joint density/pmf function

      \[f(\theta, x) = \pi(\theta)p(x\lvert\theta)\]
    • Posterior distribution for $\theta$ given $X=x$ with density/pmf function
      Discrete Prior

      \[\pi(\theta\lvert x) = \frac{\pi(\theta)p(x\lvert\theta)}{\sum_t\pi(t)p(x\lvert t)}\]

      Continuous Prior

      \[\pi(\theta\lvert x) = \frac{\pi(\theta)p(x\lvert\theta)}{\int_\Theta\pi(t)p(x\lvert t)}\]
    • Conjugate Prior Distribution Prior and Posterior in same family.

      • Example: Bernoulli Trial Given a bernoulli trial,
        • $X_1, \ldots, X_n$ are i.i.d. Bernoulli($\theta$) r.v.s.
        • Outcome space: $\mathcal{X} = {Success(1), Failure()0}$
        • Parameter Space: $\Theta = {\Theta: 0\leq\theta\leq 1}$
        • Prior Distribution for $\theta$: density $\pi(\theta)$
        • Posterior Distribution for $\theta$:

          \[\pi(\theta\lvert x_1,\ldots,x_n) = \frac{\pi(\theta)\theta^k(1-\theta)^{n-k}}{\int^1_0\pi(t)t^k(1-t)^{n-k}dt}\]

          such that

          \[\begin{aligned} &0<\theta<1 \\ &x_1 = 0 \,or\,1, \quad i=1,\ldots,n \\ &k=\sum_{i=1}^n x_i \end{aligned}\]
        • Conjugate Prior Distribution
          • A priori, assume $\theta\sim B(r,s)$ distribution, with density

            \[\pi(\theta) = \frac{\theta^{r-1}(1-\theta)^{s-1}}{\beta(r,s)},\quad 0<\theta<1\]

            where

            \[\begin{aligned} \beta(r,s) &= \int_0^1\theta^{r-1}(1-\theta)^{s-1}d\theta \\ &= \frac{\Gamma(r)\Gamma(s)}{\Gamma{r+s}} \end{aligned}\]

            And we have,

            \[\begin{aligned} &E[\theta] = \frac{r}{r+s} \\ &Var(\theta) = \frac{rs}{[(r+s)^2(r+s+1)]} \end{aligned}\]
          • A posteriori

            \[\pi(\theta\lvert T(X) =k)\sim B(r+k, s+(n-k))\]